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By now you have learned how to design DFAs and NFAs.  NFAs could sometimes be simpler to design 
than DFAs, and could have fewer states.  However, running a string through an NFA could be more 
complex because of the need to keep track of multiple active configurations.  This is an example of a 
tradeoff.  You will see many more tradeoffs during your study of computer science.  Every NFA can be 
converted to an equivalent DFA.  You learned and practiced with the conversion algorithm.

Suppose that you have designed a DFA or have converted an NFA to an equivalent DFA and that you 
have tested it to make sure that it accepts the language that you need.  Is it the most efficient solution?  
How is efficiency measured?  You study space and time complexity (mostly time complexity, because 
memory is not as restricted now as it used to be) with respect to algorithms.  The time complexity for 
processing a string in a DFA is O(n), where n is the length of the string.  Constant work is needed to 
process each character because each state has |Σ| transitions associated with it, where Σ is the alphabet 
for the DFA.  This will be independent of the number of states because every character in a string must 
be processed.   What is the space complexity for a DFA?  The alphabet is size |Σ|, the set of states Q is 
size |Q|, and the set of final states F is of size O(|Q|) because all states could be final states.  What 
accounts for most of the space complexity is the transition function.  |Q| states with |Σ| transitions per 
state result in space.  We add everything together, and keep the largest term, with a result of O(|Q| * |Σ|)
space complexity.  How can we improve the complexity?  There are two possibilities for improvement, 
reducing |Q| and reducing |Σ|.  Reducing |Σ| would change the language, so that only leaves |Q|.

If we decrease the number of states in our machine, what does this mean?  We are removing non-
essential states.  This may mean that some states are equivalent to each other and can be merged.  What
does it mean for states to be equivalent?  Two states qi and qj are equivalent if an arbitrary string run 
through the DFA beginning in both states produces the same result, either both possibilities accepted or 
both possibilities rejected.  

Let's briefly look at this formally.  What logical quantifier corresponds to “arbitrary”?  This means 
“every”, so we use the universal quantifier .  We use the symbol ≡ for “equivalent”.  Thus we have 
the following.  Remember that “iff” means “if and only if”; “p iff q” means “if p then q and if q then 
p”.

qi ≡ qj iff  w  Σ* , δ(qi , w)  F iff δ(qj , w)  F

We can negate this definition (and simplify a little via symmetry) to produce a definition for “not 
equivalent”.

qi  qj iff  w  Σ*   δ(qi , w) Ï F and δ(qj , w)  F

A final state can never be equivalent to a nonfinal state.  We can let w = λ, the empty string.  We can 
use the transitions to help us determine further nonequivalences because a symbol corresponds to a 
string of length 1.  A binary tree can be used to help us classify the states.  The nodes of the tree will 
contain sets of states.  The root of the tree initially contains all the states.  It can have up to two 
children.  One child will contain the final states, and the other will contain the nonfinal states.  Suppose
all states are final or nonfinal.  This means that all the states will be equivalent, and the minimized DFA
will only have one state, and loop transitions for each symbol in Σ.  Suppose our DFA has at least one 



final state and at least one nonfinal state.  Then the root will have two children; λ is the string that 
makes the difference.  Now consider the each child.  If 

Questions to Think About:

1. If all states are final, what is the language accepted by the DFA and the minimized DFA?
2. If all states are nonfinal, what is the language accepted by the DFA and the minimized 

DFA?
3. Remember that Q represents the set of states in the DFA and that F represents the set of 

final states in the DFA.  How can you write the set of nonfinal states using Q, F, and a 
set operation?

Try It!

1. If JFLAP is not already active, start JFLAP and click the Finite Automaton button.
2. Create an automaton with alphabet {a,b,c} that accepts all possible strings over the alphabet.
3. Save your DFA using a descriptive file name.
4. Verify that your automaton is a DFA by selecting Convert > Convert to DFA.  You should get a 

message saying “Not an NFA”.  If you don't, fix your automaton and save it.
5. Select Convert > Minimize. Your view should look similar to the following.

6. Click the Finish button.  Fill in the missing transitions.  How many do you need?  Why?
7. Save the minimized DFA if you wish.
8. Dismiss the tab for the minimization work.
9. Change all the final states to nonfinal states in your DFA and save your DFA using a descriptive

file name.
10. Perform the minimization process again.

Questions to Think About:

1. What language is accepted by the first minimized DFA?  Use formal notation to describe it.
2. What language is accepted by the second minimized DFA?  Use formal notation to describe it.



3. What is the relationship between the previous two languages?
4. What happens to the language accepted by a DFA if you switch the roles of every state?  That 

is, every final state becomes a nonfinal state, and vice versa.
5. Can you predict what happens to the language accepted by an NFA if you switch the roles of 

every state?  Why or why not?

Let's do another example where we don't collapse all the states.  We will use the alphabet {0,1} for 
binary strings, and we will build an automaton to accept nonempty strings that have odd numbers of 
both 0's and 1's or even numbers of both 0's and 1's.  What happens in the initial state?  Nothing has 
been seen yet; this corresponds to λ.  This state cannot be a final state.  When a 0 (respectively, 1) 
appears, this changes the current number of 0's (respectively, 1's) from odd to even or vice versa.  This 
suggests the possibility of four additional states of the form xy, where x and y can represent odd or 
even independently.

Try It!

1. If JFLAP is not already active, start JFLAP and click the Finite Automaton button.
2. Create an automaton with alphabet {0,1} that accepts only the strings described above.
3. Save your DFA using a descriptive file name.
4. Verify that your automaton is a DFA by selecting Convert > Convert to DFA.  You should get a 

message saying “Not an NFA”.  If you don't, fix your automaton and save it.
5. Select Convert > Minimize. Your view should look similar to the following.

6. Click on the label 0,1,4 in the right-hand pane.  Your view should look similar to the following.



7. Now we need to see which states out of the nonfinal ones can be distinguished.  Can a character
distinguish among them?  If so, which one?  Try 0.  Click the Set Terminal button.  Type 0 in 
the text box, and click the OK button in the pop-up window.  Your view should look similar to 
the following.  Notice the 0 label below the 0,1,4 one.

8. Now we need to determine which states go where in the two new tree nodes.  You can resize the
panes as needed.  δ(q0, 0) = q1, which is nonfinal.  δ(q1, 0) = q2, which is final.  δ(q4, 0) = q3, 
which is final.  This means that q0 is not equivalent to q1 or q4.  Click on the 0,1,4 label again 
and then the Auto Partition button.  Your view should look similar to the following.



9. Since state q0 is in a node by itself, we have no further work there.  Let us then look at the 1,4 
node.  Can states q1 and q4 be distinguished from each other?    δ(q1, 0) = q2, which is final.   
δ(q4, 0) = q3, which is final.  We don't know whether these states are equivalent, so let's see if 1 
can distinguish between the two states.   δ(q1, 1) = q3, which is final.   δ(q4, 1) = q2, which is 
final.  We can't determine the answer yet.  The equivalence of states q1 and q4 depends on the 
equivalence of states q2 and q3.

10. Let us look at the 2,3 node.  Can states q2 and q3 be distinguished from each other?   δ(q2, 0) = 
q1, which is nonfinal.  δ(q3, 0) = q4, which is nonfinal.  As before, we don't know whether these 
states are equivalent, so let's see if 1 can distinguish between the two states.  δ(q2, 1) = q4, which
is nonfinal.  δ(q3, 1) = q1, which is nonfinal.  We can't determine the answer yet.  The 
equivalence of states q2 and q3 depends on the equivalence of states q1 and q4.

11. Whoa!  We have infinite recursion.  If we cannot prove nonequivalence, we must have 
equivalence.  Thus, states q1 and q4 are equivalent to each other, and states q2 and q3 are 
equivalent to each other.  This is why JFLAP only has the Finish button enabled.  Click the 
Finish button.   Your view should look similar to the following.

12. Our minimized DFA will have 3 states.  One state will correspond to state q0 in the original 
DFA, one state will correspond to states q1 and q4, and one state will correspond to states q2 and 



q3.  Now we need to determine the start state, final states, and transitions in the minimized DFA 
to preserve the original DFA's accepted language.

Questions to Think About:

1. Which state should be the start state in the minimized DFA?  Why?
2. Which states should be final states in the minimized DFA?  Why?
3. Can a final state ever be equivalent to a non-final state?  Why or why not?

Try It!

1. JFLAP has determined the start state and any final state(s) for you already.  Because we have a 
DFA, each state must have a transition with every possible input symbol.  How many transitions
do you need to add?

2. If the label for a state contains one or more state from the original DFA, all you need to do is 
pick one of those states, and use the transitions that state in the original DFA as a basis for the 
transitions in the minimized DFA.  If δ(qi, a) = qj in the original DFA, the transition in the 
minimized DFA will be from the state whose label contains qi to the state whose label contains 
qj.  Add these transitions.  If you get stuck, click the Hint button.  Make sure you are complete 
by clicking the Complete button.  If you are not, keep going until you get a message saying that
all transitions are in place.  Click the Done! Button.  A new window should appear, and your 
view should be similar to the following.

3. Go back to the original DFA, and modify it so that it accepts the empty string because the 
empty string has 0 (an even number) occurrences of 0's and 0 occurences of 1's.  Save your 
modified DFA using a descriptive file name, and work through the steps to minimize that DFA. 
How many states does the new minimized DFA have?

Questions to Think About:

1. How many states are in the minimum-state DFA accepting all strings over alphabet Σ?
2. How many states are in the minimum-state DFA accepting no strings over alphabet Σ?
3. How many states are in the minimum-state DFA accepting a single string of length n?



Try It!

1. Minimize the DFA contained in aPlusbPluscPlusOverabc.DFA.jflap7.jff.  It is pictured below.
How many states result?  Is the automaton substantially different from the original one?

2. Minimize the DFA contained in UpTo3asOverab.DFA.jflap7.jff.  It is pictured below.  How 
many states result?  Is the automaton substantially different from the original one? 

 


